	MARKING SCHEME BIOTECHNOLOGY (045) SET-4 (Series &RQPS) Q.P. CODE 99 (2023-24)				
	SECTION – A				
Sl. No.	Value Points	Marks			
1	(C) Bacillus amyloliquefaciens	1			
2	(B) Adenosine deaminase	1			
3	(B) Non-coding / (A) Coding (As per the prescribed text book, pg63,both options(A)and(B) a correct)	re 1			
4	(A) Torpedo	1			
5	(C) Blood serum	1			
6	(D) M13	1			
7	(D) Antibiotics	1			
8	(B) Gene pollution	1			
9	(A) 2001	1			
10	(B) Pluripotent	1			
11	(B) Penicillium chrysogenum	1			
12	(C) Callus	1			
13	(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).	1			
14	(D) Assertion (A) is false, but Reason (R) is true.	1			
15	(B) Both Assertion (A) and Reason (R) are true, but the Reason (R) is <i>not</i> the correct explanation of the Assertion (A).	1			
16	(C) Assertion (A) is true, but Reason (R) is false.	1			

18	To understand the genetic basis of a disease		
	To search for new diagnostic methods	1.1.0	
	To search for new therapeutic modality or uses (Any two)	1+1=2	
19	Two dimensional Gel Electrophoresis Technique / Mass Spectrometry Technique	1.1.0	
		1+1=2	
	Principle of Two dimensional Gel Electrophoresis Technique:		
	Separation of proteins is on the basis of charge and size. First proteins get separated on the		
	basis of isoelectric pH (pl) by IEF technique and then on the basis of molecular size by SDS		
	PAGE technique .		
	Principle of Mass Spectrometry Technique:		
	It determines the molecular weight of a chemical compound or protein by separating the		
	molecular ions according to m/z ratio.		
	(Any one technique with principle)		
	-To overexpress a gene that encodes for the first enzyme in the biosynthetic pathway		
20	-To use Agrobacterium rhizogenes to induce excessive secondary roots (hairy roots) in plants	1 + 1 = 2	
	that normally produce useful secondary metabolites in this region.	1+1=2	
21	(a) Drowbacks : Small size / Scale up is challenging / may not represent in vivo phonotype		
	(a) Drawbacks . Small size / Scale up is chancinging / may not represent in vivo phenotype	1+1=2	
	(Any two for 1 mark each)		
	OR		
	(b) (i) The oncologist is trying to determine whether the tumour is cancerous or not.	1+1-2	
	(ii)Cell comprising tissues and organs like liver of an animal grow only to a certain size	1+1-2	
	after which they cease to grow 7 infant animal grow only to adulthood and not any further.		
	SECTION C		
	(a) The principle involved in FISH technique is hybridization of DNA of metaphase		
22	chromosomes affixed to a microscopic slide with a fluorescent DNA probe.	1	
	The principle of Microarray is that complementary sequences will bind to each other by	1	
	base pairing or hybridisation. Fluorescently labelled single stranded probe binds with		
	single stranded DNA molecule spotted on the microarray plate.	1	
	Applications of FISH are :		
	Diagnosis of genetic diseases		
	Locating specific DNA sequences		
	Applications of FISH are : Diagnosis of genetic diseases Locating specific DNA sequences		

Identi	fication of presence or absence of a gene		1/2
To stu	To study translocation of genes on chromosomes. (Any 1 point)		
Appl	ications of Microarray are :		
To m	onitor the whole genome on a single chip	for interactions among thousands of genes	
simu	ltaneously.		1⁄2
То со	mpare the amounts of many different mR	NA in two cell populations in tissue specific	
gene	s to study the regulatory gene defects, cell	lular response to environment, cell cycle	
varia	tions. (Any 1 point)		
	OF		
(b)		C	
	Expression Proteomics	Functional Proteomics	
1	Study of qualitative and	Identification and analysis of protein	14 -
	quantitative	networks involved in a living cell/	72 2
	expression of proteins in different	nuclear pore complex/ study of protein	
	environment or disease.	functions and interactions/ molecular	
		mechanisms and biological roles.	
2	Used to identify disease specific To analyse the properties of molecul		
	proteins	networks involved in a living cell.	
3	To provide understanding of the	Identification of novel proteins which	
	hasis of tumour development	are important for translocating	
		important molecules from cytoplasm of	
		a cell to nucleus and vice versa.	
•			

		Line	1/4 v 6
Erythropoietin	Anaemia	CHO cell line	
Herceptin	Breast cancer therapy	CHO cell line	
Interleukin 2	Cancer therapy	CHO cell line	
Tissue plasminogen activator	Stroke	CHO cell line	
-	Erythropoietin Herceptin Interleukin 2 Tissue plasminogen activator	ErythropoietinAnaemiaHerceptinBreast cancer therapyInterleukin 2Cancer therapyTissue plasminogen activatorStroke	ErythropoietinAnaemiaCHO cell lineHerceptinBreast cancer therapyCHO cell lineInterleukin 2Cancer therapyCHO cell lineTissue plasminogen activatorStrokeCHO cell line

24	Step 1 – Denaturation single strand Step 2 – Annealing : 60°C Step 3 – Extension : dNTPs and t	on : The DNA duplex gets separated at temperatured DNA templates. Two primers bind to the 3' end of DNA template Each primer is extended by Taq DNA polymeras he DNA strand as template at 70°C	ere above 80°C to form two es at temperature between 50 - se in 5'► 3' direction using	¹ ⁄₂ x 6= 3
25	A – Trypsin B – Paper El C – Sequenc	ectrophoresis ing		1 x 3 = 3
26	 Viable plate count method [colony forming units(CFU)]– counting the number of live cells Turbidity measurement – Absorbance at a particular wavelength is proportional to cell concentration Coulter counter – Direct counting of cells in suspension as they pass through electrical field in a single file. Dry weight – to measure constant weight of fixed volume of culture after drying. Wet weight- to measure weight of fixed volume of culture. ATP measurement- to measure ATP in the beginning end at the end of the culture. 			1⁄2 x 6 =3
27	Inactive, has SI. No. 1 2 3 4	rmless precursors of proteolytic enzymes are call Chymotrypsinogen It is inactive precursor of chymotrypsin enzyme. The substrate-binding pocket is blocked/ not exposed. Serine 195 is not acidic. Charge relay doesn't operate	ed zymogens. Chymotrypsin It is fully active enzyme. The substrate-binding pocket is not blocked and is exposed. Serine 195 is acidic. Charge relay operates Any two points	1 1+1 = 2

1
1
2
1+1 = 2
1+1=2
1+1=2
1
3
1+1=2
2
3

	OR			
	(b) (i) - The fastest moving shortest DNA fragment is obtained at 5' position (towards	2		
	anode).			
	- Since DNA synthesis occurs in 5' to 3' direction, the gel is read from 5' end (anode)			
	(ii) Single tube DNA sequencing uses fluorescent colours rather than radioactive isotopes	1+1=2		
	so is <u>safer.</u>			
	It is better as it is automated /faster /uses a single lane gel for electrophoresis/ result is			
	directly displayed on a computer screen and data can be stored in a computer.			
	(iii) M13-based vector	1		
33	(a) (i)Entrez allows us to access literature in the form of abstracts, sequences and	1/ (2		
	structures. Entrez provides comprehensive information on a given biological question.	$\frac{1}{2} \times 0 = 3$		
	Taxonomy browser provides information on taxonomic classification of various			
	species.			
	Locus link provides information on official gene names, descriptive information			
	about genes and on homologous genes			
	(ii) UniProtKB gives information about annotated protein sequences.			
	PDB (Protein Database) contains information about three dimensional structure of	1+1 =2		
	proteins.			
	OR			
	(b) (i)In BLAST:	1 2 2		
	- A given sequence is compared with the database sequences using matrices which	$1 \ge 3 = 3$		
	give scores. They either reward a match or penalise a mismatch.			
	- Top scoring matches are ranked based on whether the match was due to ancestral			
	relationship or just a random chance.			
	- True matches are examined through ENTREZ			
	(ii) GeneMark for bacterial genomes and GENSCAN for eukaryotic genomes.	1+1=2		