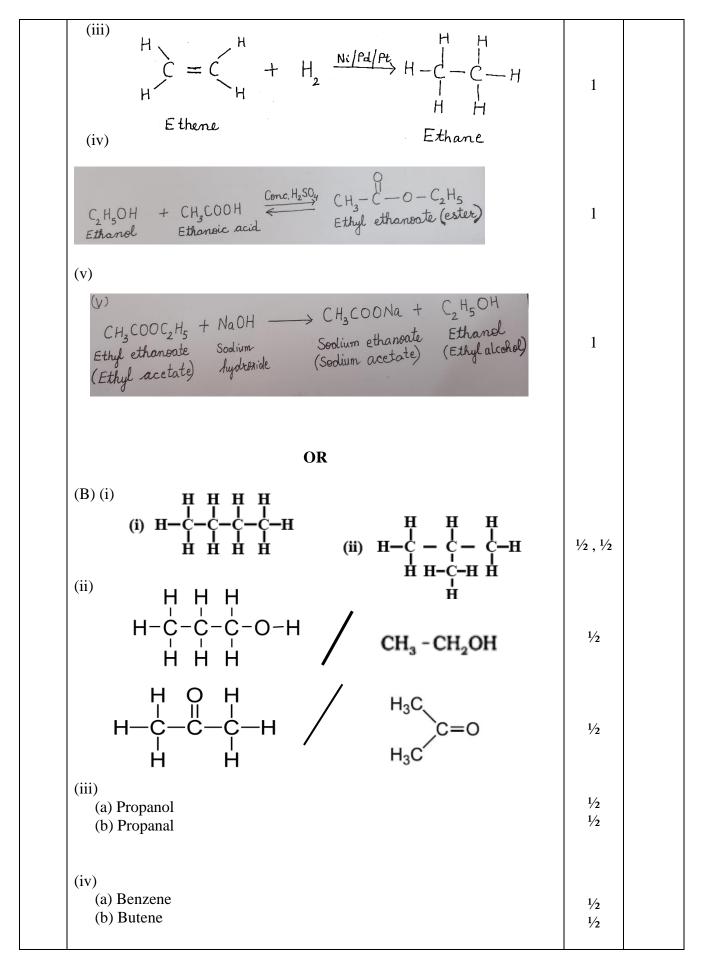
Strictly Confidential: (For Internal and Restricted use only) Secondary School Examination, 2023 Marking Scheme – Science (SUBJECT CODE -086) (PAPER CODE -31/4/3)

General Instructions: -

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- 2. "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
- 3. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- 4. The Marking scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
- 5. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 6. Evaluators will mark(√) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (√)while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 7. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 8. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 9. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
- 10. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

- 11. A full scale of marks <u>80</u> (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 12. Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
- 13. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying / not same.
 - Wrong transfer of marks from the answer book to online award list.
 - Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
 - Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 14. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- 15. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 16. The Examiners should acquaint themselves with the guidelines given in the "**Guidelines for spot Evaluation**" before starting the actual evaluation. Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 17. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 18. The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME Secondary School Examination, 2023 SCIENCE (Subject Code–086) [Paper Code:31/4/3]


0 N	Maximum Marks: 80		
Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks	Total Marks
	SECTION A		
1.	(b)	1	1
2.	(c)	1	1
3.	(d)	1	1
4.	(b)	1	1
5.	(c)	1	1
6.	(c)	1	1
7.	(b)	1	1
8.	(b)	1	1
9.	(b)	1	1
10.	(d)	1	1
11.	(a)	1	1
12.	(a)	1	1
13.	(c)	1	1
14.	(b)	1	1
15.	(d)	1	1
16.	(b)	1	1
17.	(d)	1	1
18.	(a)	1	1
19.	(b)	1	1
20.	(c)	1	1
0.1	SECTION B		
21.	• Auxin	1	
	• Auxins slowly diffuse towards the shady side of the shoot which		
	stimulate cells on the shady side to grow longer, causing the plant to	1	2
	bend towards light.		2
22.	 (A) (i) ● Copper (II) chloride / Copper chloride / Cupric chloride / CuCl₂ 	1/2	
	• colour- blue-green.	1⁄2	
	(ii) $CuO + 2HCl \rightarrow CuCl_2 + H_2O$	1	
	OR		
	(B) X : Sodium Chloride / NaCl	1/2	
	Y : Hydrogen /H ₂	1⁄2	
	Z : Chlorine / Cl ₂	1⁄2	
	B : Bleaching powder / CaOCl ₂	1/2	2
23.	• The plant kept in dark is unable to carry out photosynthesis and	1	
	due to absence of oxygen it cannot respire.		
	• But the plant kept in light is able to photosynthesize converting	1	2
2.4	CO ₂ into oxygen which it can use for respiration.	1	
24.	• Lymph	1	

	• Functions:		
	(i) carries digested and absorbed fat from intestine.	1/2	
	(ii) drains excess fluid from extracellular space back into the blood.	1/2	2
25.	Gardens have biotic components like plants, and animals. All these living	, 2	_
25.	organisms interact with each other and with abiotic components of	2	
	ecosystem like water, air and soil.	2	2
26.	(A) (i) Myopia / Short Sightedness	1/2	2
20.		⁷² 1/2	
	(ii) • Excessive curvature of eye lens		
	• Elongation of eye ball	1/2	
	(iii) Concave lens /Diverging Lens OR	1⁄2	
	(B) • Size of particles in the atmosphere is smaller than the wavelength of	1	
	visible light, so they scatter light of shorter wavelengths i.e. blue.		
	• In space, there is no scattering of light due to absence of		
	particles. (no atmosphere)	1	2
	SECTION C		
27.	(a) •7	1⁄2	
	• salt of strong acid and strong base	1⁄2	
	(b) • Pink / orange	1⁄2	
	• salt of weak base and strong acid	1⁄2	
	 (c) • No change / remain blue 	1	3
28.		1/2	
20.	(i) • To increase the conductivity of water	$\frac{72}{\frac{1}{2}, \frac{1}{2}}$	
	• Hydrogen – cathode Oxygen – anode	72, 72	
	• Anode : Cathode		
	1:2	17	
	/Volume of hydrogen liberated at cathode is twice that of oxygen	1⁄2	
	liberated at anode.		
	(ii) • White silver chloride turns grey	1⁄2	
	 Decomposition reaction / Photolytic Decomposition 	1⁄2	3
29.	Given,		
	Distance of object, $u = -20$ cm		
	Magnification $m = \frac{1}{2}$		
	Magnification m = $\frac{1}{2}$		
	$-\nu$ 1 course	1/ 1/	
	$\therefore m = \frac{-v}{u} \Longrightarrow v = -\frac{1}{2} \times -20 = 10 \text{ cm}$	1/2, 1/2	
	Using mirror formula		
	1 - 1 + 1	1/2	
	$\int f v^{\top} u$	72	
	$\begin{vmatrix} \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \\ \frac{1}{f} = \frac{1}{10} - \frac{1}{20} = \frac{1}{20} \end{vmatrix}$		
	f = 20 cm	1/2	
		72	
	If $m = \frac{1}{3}$ and v' and u' are the corresponding image distance and object		
	distance. $\frac{1}{3} = \frac{-v'}{u'} \Rightarrow v' = \frac{-u'}{3}$	1⁄2	
	$\frac{1}{f} = \frac{1}{v'} + \frac{1}{u'}$		
	$\frac{1}{20} = \frac{-3}{u'} + \frac{1}{u'} \Longrightarrow \frac{1}{20} = \frac{-2}{u'}$		
	20 <i>u</i> ' <i>u</i> ' 20 <i>u</i> '		

	u' = -40 cm.	1⁄2	3
30.	(A) (i) Food enters through a specific spot with the help of movement of cilia.	1	
	 (ii) (a) Creates an acidic medium which facilitates the action of enzyme / kills microorganisms ingested with the food. 	1⁄2	
	(b) Digestion of proteins(c) Mixing the food thoroughly with digestive juices. / pushes food	1⁄2	
	forward by peristalsis. (d) Conversion of starch into sugar	1/2 1/2	
	OR		
	 (B) (i) Blood goes through the heart twice during each cycle. (ii) • To prevent oxygenated and deoxygenated blood from mixing for 	1	
	 It helps birds and mammals who have high energy needs and 	1	
	constantly use energy to maintain their body temperature.	1	3
31.	(A) (i) Alternating current can be transmitted over long distances without much loss of electric energy.	1	
	(ii) Household supply – Alternating current (AC)	1⁄2	
	Battery of Dry cell – Direct current (DC)	1⁄2	
	(iii) It melts and breaks the circuit when a current of higher value than its rating flows through it.	1	
	OR	1	
	(B) ●		
	Magnetic field lines		
	field files		
	Solenold		
		1	
		1	
	[Deduct ½ mark if direction of current or magnetic field is not marked]		
	• Maximum at A	1⁄2	
	Magnetic field lines are crowded. / Magnetic field adds up due to 'n' number of turns of a solenoid.	1⁄2	

	Minimum at B		1/2	
	Magnetic field lines are far apart.			3
32.	•			
52.	Biodegradable Biodegradable wastes can be	Non-biodegradable Non-biodegradable wastes	1	
	broken down by biological	cannot be broken down by biological processes.	1	
	processes.			
	 Impact of accumulated biodegradable wastes: (i) Foul smell 			
	(ii) Breeding place for carriersImpact of accumulated non-biodeg		1/2	
	(i) Biological Magnification(ii) Affect soil fertility.	(or any other)	1/2 1/2	3
33.	(A)The splitting up of white light into colours while passing through a glass light.		1	
	 (i) Violet bends the most (ii) Red bends the least 		1/2 1/2	
	White Jight Prism			
		OR		
	(B)A rainbow is a natural spectrum of rainfall.	sunlight appearing in the sky after the	1	
	• Ro Sunlight		2	
	Red Violet			3

	SECTION D		
34.	 (i) The two modes of asexual reproduction observed in hydra are: <u>Budding</u>: A bud develops as an outgrowth. These buds develop into tiny individuals. When fully matured it detaches from the parent 	1/2 , 1	
	 body and become new independent individual. <u>Regeneration</u>: Hydra can be cut into any number of pieces and each piece grows into a complete organism. 	¹ ∕2 , 1	
	 (ii) Definition: When any vegetative part of plants like root, stem or leaf is used to grow new plants. Advantages: - 	1	
	1. Plants can bear flowers and fruits earlier than those produced from seeds.		
	 It enables the propagation of plants such as banana, orange, rose and jasmine which have lost the capacity to produce seeds. The plants produced are genetically similar enough to the parent plant to have all the characteristics. 	1/2, 1/2	
	(Any two)		5
35.	(i) Current flowing through a conductor is directly proportional to the potential difference. $/ V\alpha I / I \alpha V$	1	
	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ - \\ - \\ - \\ - \\ - \\$		
		1	
	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \xrightarrow{+} () \xrightarrow{-} () \xrightarrow{K} () K$		
	(Any one diagram) (ii)Since ammeter is connected in series, it should not increase the		
	resistance of the circuit. / should allow maximum current to flow through the circuit.	1	
	 (iii) • Series combination - Graph A Less slope and more resistance 	1/2 1/2	
	Parallel combination - Graph B	1/2	
	More slope and less resistance	1⁄2	5
36.	(A) (i) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	1	
	(ii) $CH_3 - CH_2OH \xrightarrow{Alkaline KMnO_4 + Heat}{Or acidified K_2Cr_2O_7 + Heat} CH_3COOH$	1	
	Ethanol Ethanoic Acid	1	

X_086_31/4/3_Science#Page- 8

	(v) (v) (x N (x x) N x) (x x) (x x) (x x) (x x) (x x) (x		1	5
	SECTION E			
37.	 (i) Sexual reproduction involves the fusion of male and female gametes, which combines to the characters of both parents and cause variation. (ii) 			
	F ₁ generation	F ₂ generation		
	• In F ₁ generation only the dominant traits are expressed.	• In F ₂ generation both dominant and recessive traits are expressed.		
	• It refers to the offspring/ plants resulting immediately from a cross between the first set of parents.	• It refers to the offspring/plants resulting from a cross among the plants of F ₁ generation.	1	
	[Any one] (iii) (A) Because if a niche of population of organisms is altered, the whole population could be wiped out. However, if variation is present in this population they have some chance of survival. [Alternate answer] If there is a population of bacteria living in temperate waters and if water temperature were to be increased by global warming, most of the bacteria would die, but a few variants resistant to heat would survive and grow further. Thus, variations are useful for survival of species over time.			
	OR			
	(iii) (B) • Wrinkled, yellow		1/2	
	Round, green		1⁄2	
	• If two or more traits are invo inherited irrespective of the co	olved, their genes are independently main parents	^y 1	4
38.	(i) Refractive index of diamond = $\frac{Sp}{Spe}$	eed of light in vacuum eed of light in diamond	1⁄2	·
	Speed of light in diamond = $\frac{3 \times 10^8 \text{ m/s}}{2 \cdot 42} = 1 \cdot 23 \times 10^8 \text{ m/s}$			
	(ii) $\angle r$ in carbon disulphide $< \angle r$ in glass $< \angle r$ in water			
	 (iii) (A) (a) • Glass The speed of light in water is more f 	han the speed of light in class 1	1⁄2	
	• The speed of light in water is more to Refractive index of glass is more than		1⁄2	

		1	-
	(b) Light will enter from water to glass without bending (undeviated /	1	
	straight) because in this case $\angle i = 0$; $\angle r = 0$.		
	OR		
	(iii) (B)		
	$n_{glass} = \frac{3}{2}$		
	$n = -\frac{4}{2}$		
	$n_{water} = \frac{4}{3}$		
	$v_{glass} = 2 \times 10^8 m/s$		
	5 55		
	speed of light in $nacuum(c)$		
	$n_{glass} = \frac{speed \ of \ light \ in \ vacuum(c)}{speed \ of \ light glass(v_g)}$		
	$\mathcal{B}^{\text{subs}}$ speed of light glass (v_g)		
	$c = n_{glass} \times v_{glass}$		
	$=\frac{3}{2}\times2\times10^8m/s$		
		_	
	$= 3 \times 10^8 m/s$	1	
	$v_{water} = \frac{c}{n_{water}} = \frac{3 \times 10^8 m/s}{\frac{4}{2}}$		
	$vwater = \frac{1}{n_{water}} = \frac{4}{3}$		
	$9 \times 108 \text{ m/s} \approx 2.25 \times 108 \text{ m/s}$	1	
	$=\frac{9}{4} \times 10^8$ m/s or 2.25 × 10 ⁸ m/s	1	4
39.	(i)		
59.			
	X X VOIX		
	$\begin{array}{c} \begin{array}{c} \times \operatorname{Cl} \times \\ \times \times \end{array} \\ \times \times \end{array} \qquad \qquad$	1	
	$Mg_{\bullet}^{\bullet} + \qquad $		
	$ \begin{array}{c} \times \times \\ \times \operatorname{Cl} \times \\ \times \operatorname{Cl} \times \end{array} $		
	(ii)		
	• They are hard solids		
	-		
	• They are soluble in water	1/ 1/	
	• They conduct electricity in aqueous solution or molten state	1/2, 1/2	
	[Any other]		
	[Any two]		
	(iii) (A) • Sodium atom has one electron in its outermost shell	1	
	• It attains its nearest noble gas configuration by losing this electron	1	
		1	
	forming Na ⁺ ion / Na \rightarrow Na ⁺ + e ⁻	1	
	2,8,1 2,8		
	stable		
	OR		
	(iii) (B) (i) Because movement of ions in the solid is not possible due to		
	their rigid structure.	1	
	(ii) H_2 gas is liberated at cathode.	1	4
		1	